Experimental study on turbulent bound- ary-layer flows with wall transpiration

نویسنده

  • MARCO FERRO
چکیده

Wall transpiration, in the form of wall-normal suction or blowing through a permeable wall, is a relatively simple and effective technique to control the behaviour of a boundary layer. For its potential applications for laminar-turbulent transition and separation delay (suction) or for turbulent drag reduction and thermal protection (blowing), wall transpiration has over the past decades been the topic of a significant amount of studies. However, as far as the turbulent regime is concerned, fundamental understanding of the phenomena occurring in the boundary layer in presence of wall transpiration is limited and considerable disagreements persist even on the description of basic quantities, such as the mean streamwise velocity, for the rather simplified case of flat-plate boundary-layer flows without pressure gradients. In order to provide new experimental data on suction and blowing boundary layers, an experimental apparatus was designed and brought into operation. The perforated region spans the whole 1.2 m of the test-section width and with its streamwise extent of 6.5 m is significantly longer than previous studies, allowing for a better investigation of the spatial development of the boundary layer. The quality of the experimental setup and measurement procedures was verified with extensive testing, including benchmarking against previous results on a canonical zero-pressure-gradient turbulent boundary layer (ZPG TBL) and on a laminar asymptotic suction boundary layer. The present experimental results on ZPG turbulent suction boundary layers show that it is possible to experimentally realize a turbulent asymptotic suction boundary layer (TASBL) where the boundary layer mean-velocity profile becomes independent of the streamwise location, so that the suction rate constitutes the only control parameter. TASBLs show a mean-velocity profile with a large logarithmic region and without the existence of a clear wake region. If outer scaling is adopted, using the free-stream velocity and the boundary layer thickness (δ99) as characteristic velocity and length scale respectively, the logarithmic region is described by a slope Ao = 0.064 and an intercept Bo = 0.994, independently from the suction rate (Γ). Relaminarization of an initially turbulent boundary layer is observed for Γ > 3.70× 10−3. Wall suction is responsible for a strong damping of the velocity fluctuations, with a decrease of the near-wall peak of the velocity-variance profile ranging from 50% to 65% when compared to a canonical ZPG TBL at comparable Reτ . This decrease in the turbulent activity appears to be explained by an increased stability of the near-wall streaks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of coupling on turbulent gas-particle boundary layer flows at borderline volume fractions using kinetic theory

This study is concerned with the prediction of particles’ velocity in a dilute turbulent gas-solidboundary layer flow using a fully Eulerian two-fluid model. The closures required for equationsdescribing the particulate phase are derived from the kinetic theory of granular flows. Gas phaseturbulence is modeled by one-equation model and solid phase turbulence by MLH theory. Resultsof one-way and...

متن کامل

Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer

Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...

متن کامل

Passive Scalar in a Turbulent Channel Flow with Wall Velocity Disturbances

Direct Numerical Simulations (DNS) of a passive scalar in a turbulent channel flow with a normal velocity disturbance on the lower wall are presented for high and low Reynolds numbers. The aim is to reproduce the complex physics of turbulent rough flows without dealing with the geometric complexity. In addition, isothermal walls that cannot be easily assigned in an experiment, are considered. T...

متن کامل

Üsaavlabs Technical Report 65-41 a Comparison of the Theoretical Determination of the Development of the Boundary Layer Momentum Thickness in an Arbitrary Pressure Gradient with Full-scale Flight Experiments on a Porous Airfoil Section with Transpiration

Calculation of the turbulent boundary layer momentum thickness around a NACA 4416 airfoil section has been made by a successive approximation method developed by one of the authors for two-dimensional I and axisymmetric flows. These results are compared with experimental results obtained from flight tests with a sailplane--Schweizer TG-3— | with reasonable results. I

متن کامل

Streamwise-varying steady transpiration control in turbulent pipe flow

The effect of streamwise-varying steady transpiration on turbulent pipe flow is examined using direct numerical simulation at fixed friction Reynolds number Reτ = 314. The streamwise momentum equation reveals three physical mechanisms caused by transpiration acting in the flow: modification of Reynolds shear stress, steady streaming and generation of non-zero mean streamwise gradients. The infl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017